Add like
Add dislike
Add to saved papers

Glomerulosclerosis Induced by Deficiency of Membrane-Associated Guanylate Kinase Inverted 2 in Kidney Podocytes.

Membrane-associated guanylate kinase inverted 2 (MAGI-2) is a component of the slit diaphragm (SD) of glomerular podocytes. Here, we investigated the podocyte-specific function of MAGI-2 using newly generated podocyte-specific MAGI-2-knockout (MAGI-2-KO) mice. Compared with podocytes from wild-type mice, podocytes from MAGI-2-KO mice exhibited SD disruption, morphologic abnormalities of foot processes, and podocyte apoptosis leading to podocyte loss. These pathologic changes manifested as massive albuminuria by 8 weeks of age and glomerulosclerosis and significantly higher plasma creatinine levels at 12 weeks of age; all MAGI-2-KO mice died by 20 weeks of age. Loss of MAGI-2 in podocytes associated with decreased expression and nuclear translocation of dendrin, which is also a component of the SD complex. Dendrin translocates from the SD to the nucleus of injured podocytes, promoting apoptosis. Our coimmunoprecipitation and in vitro reconstitution studies showed that dendrin is phosphorylated by Fyn and dephosphorylated by PTP1B, and that Fyn-induced phosphorylation prevents Nedd4-2-mediated ubiquitination of dendrin. Under physiologic conditions in vivo , phosphorylated dendrin localized at the SDs; in the absence of MAGI-2, dephosphorylated dendrin accumulated in the nucleus. Furthermore, induction of experimental GN in rats led to the downregulation of MAGI-2 expression and the nuclear accumulation of dendrin in podocytes. In summary, MAGI-2 and Fyn protect dendrin from Nedd4-2-mediated ubiquitination and from nuclear translocation, thereby maintaining the physiologic homeostasis of podocytes, and the lack of MAGI-2 in podocytes results in FSGS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app