Add like
Add dislike
Add to saved papers

Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents.

Reduction and alkylation of cysteine residues is part of virtually any proteomics workflow. Despite its frequent use, up to date no systematic investigation of the impact of different conditions on the outcome of proteomics studies has been performed. In this study, we compared common reduction reagents (dithiothreitol, tris-(2-carboxyethyl)-phosphine, and β-mercaptoethanol) and alkylation reagents (iodoacetamide, iodoacetic acid, acrylamide, and chloroacetamide). Using in-gel digests as well as SAX fractionated in-solution digests of cytosolic fractions of HeLa cells, we evaluated 13 different reduction and alkylation conditions resulting in considerably varying identification rates. We observed strong differences in offsite alkylation reactions at 7 amino acids as well as at the peptide N terminus, identifying single and double adducts of all reagents. Using dimethyl labeling, mass tolerant searches, and synthetic peptide experiments, we identified alkylation of methionine residues by iodine-containing alkylation reagents as one of the major factors for the differences. We observed differences of more than 9-fold in numbers of identified methionine-containing peptide spectral matches for in-gel digested samples between iodine- and noniodine-containing alkylation reagents. This was because of formation of carbamidomethylated and carboxymethylated methionine side chains and a resulting prominent neutral loss during ESI ionization or in MS/MS fragmentation, strongly decreasing identification rates of methionine-containing peptides. We achieved best results with acrylamide as alkylation reagent, whereas the highest numbers of peptide spectral matches were obtained when reducing with dithiothreitol and β-mercaptoethanol for the in-solution and the in-gel digested samples, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app