Journal Article
Review
Add like
Add dislike
Add to saved papers

Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.

Muscle contraction is commonly associated with the cross-bridge and sliding filament theories, which have received strong support from experiments conducted over the years in different laboratories. However, there are studies that cannot be readily explained by the theories, showing 1) a plateau of the force-length relation extended beyond optimal filament overlap, and forces produced at long sarcomere lengths that are higher than those predicted by the sliding filament theory; 2) passive forces at long sarcomere lengths that can be modulated by activation and Ca(2+), which changes the force-length relation; and 3) an unexplained high force produced during and after stretch of activated muscle fibers. Some of these studies even propose "new theories of contraction." While some of these observations deserve evaluation, many of these studies present data that lack a rigorous control and experiments that cannot be repeated in other laboratories. This article reviews these issues, looking into studies that have used intact and permeabilized fibers, myofibrils, isolated sarcomeres, and half-sarcomeres. A common mechanism associated with sarcomere and half-sarcomere length nonuniformities and a Ca(2+)-induced increase in the stiffness of titin is proposed to explain observations that derive from these studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app