Add like
Add dislike
Add to saved papers

Aldehyde dehydrogenase 1A1 increases NADH levels and promotes tumor growth via glutathione/dihydrolipoic acid-dependent NAD+ reduction.

Oncotarget 2017 May 9
Aldehyde dehydrogenase 1A1 (ALDH1A1) is a member of the aldehyde dehydrogenase superfamily that oxidizes aldehydes to their corresponding acids, reactions that are coupled to the reduction of NAD+ to NADH. We report here that ALDH1A1 can also use glutathione (GSH) and dihydrolipoic acid (DHLA) as electron donors to reduce NAD+ to NADH. The GSH/DHLA-dependent NAD+-reduction activity of ALDH1A1 is not affected by the aldehyde dehydrogenase inhibitor or by mutation of the residues in its aldehyde-binding pocket. It is thus a distinct biochemical reaction from the classic aldehyde-dehydrogenase activity catalyzed by ALDH1A1. We also found that the ectopic expression of ALDH1A1 decreased the intracellular NAD+/NADH ratio, while knockout of ALDH1A1 increased the NAD+/NADH ratio. Simultaneous knockout of ALDH1A1 and its isozyme ALDH3A1 in lung cancer cell line NCI-H460 inhibited tumor growth in a xenograft model. Moreover, the ALDH1A1 mutants that retained their GSH/DHLA-dependent NAD+ reduction activity but lost their aldehyde-dehydrogenase activity were able to decrease the NAD+/NADH ratio and to rescue the impaired growth of ALDH1A1/3A1 double knockout tumor cells. Collectively, these results suggest that this newly characterized GSH/DHLA-dependent NAD+-reduction activity of ALDH1A1 can decrease cellular NAD+/NADH ratio and promote tumor growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app