Add like
Add dislike
Add to saved papers

Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy.

Our knowledge of actinide chemical bonds lags far behind our understanding of the bonding regimes of any other series of elements. This is a major issue given the technological as well as fundamental importance of f-block elements. Some key chemical differences between actinides and lanthanides-and between different actinides-can be ascribed to minor differences in covalency, that is, the degree to which electrons are shared between the f-block element and coordinated ligands. Yet there are almost no direct measures of such covalency for actinides. Here we report the first pulsed electron paramagnetic resonance spectra of actinide compounds. We apply the hyperfine sublevel correlation technique to quantify the electron-spin density at ligand nuclei (via the weak hyperfine interactions) in molecular thorium(III) and uranium(III) species and therefore the extent of covalency. Such information will be important in developing our understanding of the chemical bonding, and therefore the reactivity, of actinides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app