JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation.

Scientific Reports 2017 May 24
Enantioselectivity in the aquatic toxicity of chiral pesticides has been widely investigated, while the molecular mechanisms remain unclear. Thus far, few studies has focused on genomic expression related to selective toxicity in chiral pesticide, nor on epigenetic changes, such as DNA methylation. Here, we used fipronil, a broad-spectrum insecticide, as a model chemical to probe its enantioselective toxicity in embryo development. Our results showed that S-(+)-fipronil caused severer developmental toxicity in embryos. The MeDIP-Seq analysis demonstrated that S-(+)-fipronil dysregulated a higher level of genomic DNA methylation than R-(-)-fipronil. Gene Ontology analysis revealed that S-(+)-fipronil caused more differentially methylated genes that are involved in developmental processes. Compared with R-(-)-fipronil, S-(+)-fipronil significantly disrupted 7 signaling pathways (i.e., mitogen-activated protein kinases, tight junctions, focal adhesion, transforming growth factor-β, vascular smooth muscle contraction, and the hedgehog and Wnt signaling pathways) by hyper-methylation of developmentally related genes, which further induced the downregulation of those genes. Together, these data suggest that differences in DNA methylation may partly explain the enantioselectivity of fipronil to zebrafish embryos. The application of epigenetics to investigate the enantioselective toxicity mechanism of chiral chemicals would provide a further understanding of their stereoselectivity biological effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app