Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genetic variants in the transcription regulatory region of MEGF10 are associated with autism in Chinese Han population.

Scientific Reports 2017 May 24
Multiple epidermal growth factor-like-domains 10 (MEGF10), a critical member of the apoptotic engulfment pathway, mediates axon pruning and synapse elimination during brain development. Previous studies indicated that synaptic pruning deficit was associated with autism-related phenotypes. However, the relationship between MEGF10 and autism remains poorly understood. Disease-associated variants are significantly enriched in the transcription regulatory regions. These include the transcription start site (TSS) and its cis-regulatory elements. To investigate the role of MEGF10 variants with putative transcription regulatory function in the etiology of autism, we performed a family-based association study in 410 Chinese Han trios. Our results indicate that three single nucleotide polymorphisms (SNPs), rs4836316, rs2194079 and rs4836317 near the TSS are significantly associated with autism following Bonferroni correction (p = 0.0011, p = 0.0088, and p = 0.0023, respectively). Haplotype T-A-G (rs4836316-rs2194079-rs4836317) was preferentially transmitted from parents to affected offspring (p permutation  = 0.0055). Consistently, functional exploration further verified that the risk allele and haplotype might influence its binding with transcription factors, resulting in decreased transcriptional activity of MEGF10. Our findings indicated that the risk alleles and haplotype near the MEGF10 TSS might modulate transcriptional activity and increase the susceptibility to autism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app