Add like
Add dislike
Add to saved papers

Effects of leucine supplementation and resistance training on myopathy of diabetic rats.

Leucine supplementation and resistance training positively influence the protein translation process and the cell signaling mTOR (mammalian target of rapamycin) pathway that regulates muscle protein balance and muscle remodeling, and thus may be therapeutic to diabetic myopathy. However, the effect of a combined intervention has not been well studied. Forty male Wistar rats were divided into five groups, control (C), diabetic control (D), diabetic + trained (DT), diabetic + L-leucine (DL), diabetic + L-leucine + trained (DLT). The supplementation of 5% leucine in chow, and resistance training were conducted for 8 weeks postweaning of rats. The extensor digitorum longus was used to assess signaling proteins involved in muscle protein synthesis, and the gastrocnemius and soleus were used for determination of muscle weight. Blood samples were collected for biochemical assays. Strength and ambulation tests were employed to evaluate motor performance. Results showed that both leucine supplementation and resistance training elevated the activity of mTOR-p70S6K in diabetic rats ( P  < 0.05). Moreover, though leucine supplementation in combination with resistance training demonstrated synergistic effects on p70S6K ( P  < 0.05), both treatments were capable of recovering motor performance ( P  <  0.05 ). In conclusion, 5% leucine supplementation combined with resistance training has the potential to attenuate muscle loss and motor performance decrements in diabetic rats, at least in part through increased protein synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app