Add like
Add dislike
Add to saved papers

Protective effect of remote limb post conditioning via upregulation of heme oxygenase-1/BDNF pathway in rat model of cerebral ischemic reperfusion injury.

Brain Research 2017 August 16
AIM: Remote ischemic post conditioning (RIPOC) has shown to be neuroprotective against cerebral ischemic reperfusion (I/R) injury. However, the RIPOC protection against I/R injury induced cognitive abnormalities still remains elusive. Abundant evidence from earlier studies highlighted the role of heme oxygenase-1 (HO-1) in neuronal survival in various neurodegenerative disorders. Thus, in the present study, we investigated the possible contribution of HO-1 in RIPOC mediated neuroprotection against cerebral I/R injury and associated cognitive deficits.

EXPERIMENTAL PROCEDURE: Rats were subjected to bilateral common carotid occlusion model to induce I/R injury. RIPOC was achieved by 3 cycles of ischemia (10min) and reperfusion (10min) of bilateral femoral artery. Behavioral, biochemical and histological evaluation was performed. The levels of Tumor Necrosis Factor (TNF-α) were estimated. To further confirm molecular mechanism, HO-1 and Brain Derived Neurotrophic Factor (BDNF) activities were estimated.

RESULTS: Ischemic injury resulted in severe neurological deficits and cognitive abnormalities besides elevating oxidative stress and neuroinflammation. RIPOC intervention improved the behavioral parameters and anti-oxidant content. In addition, RIPOC decreased the levels of oxidative markers and pro-inflammatory cytokines like TNF-α. Moreover, RIPOC significantly upregulated HO-1 and neurotrophin including BDNF. Marked reduction in hippocampal structural abnormalities were observed with RIPOC intervention. SnPP treatment reversed the protective effects of RIPOC.

CONCLUSION: These findings suggest that the neuroprotective effects of RIPOC during early reperfusion may be mediated through upregulation of HO-1 and BDNF, as the conditioning stimulus was found ineffective in presence of HO-1 inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app