Add like
Add dislike
Add to saved papers

Trace level and highly selective determination of urea in various real samples based upon voltammetric analysis of diacetylmonoxime-urea reaction product on the carbon nanotube/carbon paste electrode.

In this study an innovative method was introduced for selective and precise determination of urea in various real samples including urine, blood serum, soil and water. The method was based on the square wave voltammetry determination of an electroactive product, generated during diacetylmonoxime reaction with urea. A carbon paste electrode, modified with multi-walled carbon nanotubes (MWCNTs) was found to be an appropriate electrochemical transducer for recording of the electrochemical signal. It was found that the chemical reaction conditions influenced the analytical signal directly. The calibration graph of the method was linear in the range of 1 × 10-7 - 1 × 10-2  mol L-1 . The detection limit was calculated to be 52 nmol L-1 . Relative standard error of the method was also calculated to be 3.9% (n = 3). The developed determination procedure was applied for urea determination in various real samples including soil, urine, plasma and water samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app