Add like
Add dislike
Add to saved papers

Novel propanamides as fatty acid amide hydrolase inhibitors.

Fatty acid amide hydrolase (FAAH) has a key role in the control of the cannabinoid signaling, through the hydrolysis of the endocannabinoids anandamide and in some tissues 2-arachidonoylglycerol. FAAH inhibition represents a promising strategy to activate the cannabinoid system, since it does not result in the psychotropic and peripheral side effects characterizing the agonists of the cannabinoid receptors. Here we present the discovery of a novel class of profen derivatives, the N-(heteroaryl)-2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamides, as FAAH inhibitors. Enzymatic assays showed potencies toward FAAH ranging from nanomolar to micromolar range, and the most compounds lack activity toward the two isoforms of cyclooxygenase. Extensive structure-activity studies and the definition of the binding mode for the lead compound of the series are also presented. Kinetic assays in rat and mouse FAAH on selected compounds of the series demonstrated that slight modifications of the chemical structure could influence the binding mode and give rise to competitive (TPA1) or non-competitive (TPA14) inhibition modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app