Add like
Add dislike
Add to saved papers

Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.

Chemosphere 2017 September
The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in oysters were lower than those in the net haul samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app