JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prenatal ambient air pollution exposure, infant growth and placental mitochondrial DNA content in the INMA birth cohort.

BACKGROUND: The association between prenatal air pollution exposure and postnatal growth has hardly been explored. Mitochondrial DNA (mtDNA), as a marker of oxidative stress, and growth at birth can play an intermediate role in this association.

OBJECTIVE: In a subset of the Spanish birth cohort INMA we assessed first whether prenatal nitrogen dioxide (NO2) exposure is associated with infant growth. Secondly, we evaluated whether growth at birth (length and weight) could play a mediating role in this association. Finally, the mediation role of placental mitochondrial DNA content in this association was assessed.

METHODS: In 336 INMA children, relative placental mtDNA content was measured. Land-use regression models were used to estimate prenatal NO2 exposure. Infant growth (height and weight) was assessed at birth, at 6 months of age, and at 1 year of age. We used multiple linear regression models and performed mediation analyses. The proportion of mediation was calculated as the ratio of indirect effect to total effect.

RESULTS: Prenatal NO2 exposure was inversely associated with all infant growth parameters. A 10µg/m³ increment in prenatal NO2 exposure during trimester 1 of pregnancy was significantly inversely associated with height at 6 months of age (-6.6%; 95%CI: -11.4, -1.9) and weight at 1 year of age (-4.2%; 95%CI: -8.3, -0.1). These associations were mediated by birth length (31.7%; 95%CI: 34.5, 14.3) and weight (53.7%; 95%CI: 65.3, -0.3), respectively. Furthermore, 5.5% (95%CI: 10.0, -0.2) of the association between trimester 1 NO2 exposure and length at 6 months of age could be mediated by placental mtDNA content.

CONCLUSIONS: Our results suggest that impaired fetal growth caused by prenatal air pollution exposure can lead to impaired infant growth during the first year of life. Furthermore, molecular adaptations in placental mtDNA are associated with postnatal consequences of air pollution induced alterations in growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app