Add like
Add dislike
Add to saved papers

The Effects of Crushed Ice Ingestion Prior to Steady State Exercise in the Heat.

This study examined the physiological effects of crushed ice ingestion before steady state exercise in the heat. Ten healthy males with age (23 ± 3 y), height (176.9 ± 8.7 cm), body-mass (73.5 ± 8.0 kg), VO2peak (48.5 ± 3.6 mL∙kg∙min(-1)) participated in the study. Participants completed 60 min of cycling at 55% of their VO2peak preceded by 30 min of precooling whereby 7 g∙kg(-1) of thermoneutral water (CON) or crushed ice (ICE) was ingested. The reduction in Tc at the conclusion of precooling was greater in ICE (-0.9 ± 0.3 °C) compared with CON (-0.2 ± 0.2 °C) (p £ .05). Heat storage capacity was greater in ICE compared with CON after precooling (ICE -29.3 ± 4.8 W∙m(-2); CON -11.1 ± 7.3 W∙m(-2), p < .05). Total heat storage was greater in ICE compared with CON at the end of the steady state cycle (ICE 62.0 ± 12.5 W∙m-2; CON 49.9 ± 13.4 W∙m(-2), p < .05). Gross efficiency was higher in ICE compared with CON throughout the steady state cycle (ICE 21.4 ± 1.8%; CON 20.4 ± 1.9%, p < .05). Ice ingestion resulted in a lower thermal sensation at the end of precooling and a lower sweat rate during the initial stages of cycling (p < .05). Sweat loss, respiratory exchange ratio, heart rate and ratings of perceived exertion and thirst were similar between conditions (p > .05). Precooling with crushed ice led to improved gross efficiency while cycling due to an increased heat storage capacity, which was the result of a lower core temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app