Add like
Add dislike
Add to saved papers

Neural AILC for Error Tracking Against Arbitrary Initial Shifts.

This paper concerns with the adaptive iterative learning control using neural networks for systems performing repetitive tasks over a finite time interval. Two standing issues of such iterative learning control processes are addressed: one is the initial condition problem and the other is that related to the approximation error. Instead of the state tracking, an error tracking approach is proposed to tackle the problem arising from arbitrary initial shifts. The desired error trajectory is prespecified at the design stage, suitable to different tracking tasks. The initial value of the desired error trajectory for each cycle is required to be the same as that of the actual error trajectory. It is just a requirement for the initial value of the desired error trajectory, but does not pose any requirement for the initial value of the actual error trajectory. It is shown that the actual error trajectory is adjustable and is able to converge to a prespecified neighborhood of the origin, while all variables of the closed-loop system are of uniform boundedness. The robustness improvement in case of nonzero approximation error is made possible due to the use of a deadzone modified Lyapunov functional. The resultant estimation for the bound of the approximation error avoids deterioration in tracking performance. The effectiveness of the designed learning controller is validated through an illustrative example.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app