Add like
Add dislike
Add to saved papers

Efficient Hardware Implementation of Real-Time Low-Power Movement Intention Detector System Using FFT and Adaptive Wavelet Transform.

The brain-computer interfacing (BCI), a platform to extract features and classify different motor movement tasks from noisy and highly correlated electroencephalogram signals, is limited mostly by the complex and power-hungry algorithms. Among different techniques recently devised to tackle this issue, real-time onset detection, due to its negligible delay and minimal power overhead, is the most efficient one. Here, we propose a novel algorithm that outperforms the state-of-the-art design by sixfold in terms of speed, without sacrificing the accuracy for a real-time, hand movement intention detection based on the adaptive wavelet transform with only 1 s detection delay and maximum sensitivity of 88% and selectivity of 78% (only 7% loss of sensitivity).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app