Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures.

Nano Letters 2017 June 15
Type-II and quasi type-II heterostructure nanocrystals are known to exhibit extended excited-state lifetimes compared to their single material counterparts because of reduced wave function overlap between the electron and hole. However, due to fast and efficient hole trapping and nonuniform morphologies, the photophysics of dot-in-rod heterostructures are more rich and complex than this simple picture. Using transient absorption spectroscopy, we observe that the behavior of electrons in the CdS "rod" or "bulb" regions of nonuniform ZnSe/CdS and CdSe/CdS dot-in-rods is similar regardless of the "dot" material, which supports previous work demonstrating that hole trapping and particle morphology drive electron dynamics. Furthermore, we show that the longest lived state in these dot-in-rods is not generated by the type-II or quasi type-II band alignment between the dot and the rod, but rather by electron-hole dissociation that occurs due to fast hole trapping in the CdS rod and electron localization to the bulb. We propose that specific variations in particle morphology and surface chemistry determine the mechanism and efficiency of charge separation and recombination in these nanostructures, and therefore impact their excited-state dynamics to a greater extent than the heterostructure energy level alignment alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app