Add like
Add dislike
Add to saved papers

Estimated lower speed boundary at which the walk ratio constancy is broken in healthy adults.

[Purpose] The ratio of step length to cadence (walk ratio) is invariant over a wide range of speeds. However, no studies have investigated details of the change in the walk ratio at slow speeds. It is necessary to explore how walking behavior changes at a low speed to understand the slow walking observed in various conditions such as aging and pathological conditions. In this study, changes in the walk ratio at slow speeds were investigated, and a lower boundary was estimated at which the walk ratio constancy is broken. [Subjects and Methods] Twenty-one healthy adults were instructed to walk along a flat, straight walkway at five different speeds (fast, preferred, slightly slow, slow, and very slow). The walk ratio was calculated from the step length and cadence. [Results] As the walking speed decreased, the walk ratio and variance began to increase abruptly. The initial break in the walk ratio constancy was at approximately 62 m/min. In addition, the boundary of cadence was approximately 98 m/steps/min. [Conclusions] The study successfully determined a lower boundary at which the walk ratio constancy was broken, suggesting that different control strategies are used when walking at less than the gait speed at which constancy is broken in healthy adults. The finding provides valuable information for understanding slow walking observed in individuals with various pathological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app