Add like
Add dislike
Add to saved papers

The Interaction between Trolox and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic Acid on Hypoxic Pulmonary Vasoconstriction in the Isolated Rabbit Lung.

BACKGROUND: The mechanism of hypoxic pulmonary vasoconstriction (HPV) is still debatable. It has been proposed that reactive oxygen species (ROS) might be involved in HPV. However, there is no special transporter for superoxide anion in the cell membrane and it may release from the cells via anion exchanger. Therefore, the aim of this study was to investigate the interaction of ROS and anion exchanger in acute HPV.

METHODS: The present study was performed in the isolated rabbit lung. After preparation, the lungs were divided into four hypoxic groups of control, Trolox (antioxidant)-treated, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, anion exchanger inhibitor)-treated, and Trolox+DIDS-treated. Pulmonary artery pressure, left atrial pressure, and lung weight were continuously registered and PVR was then calculated. PO2, PCO2, HCO3(-), pH, and NO metabolites of the perfusate were measured during steady-state and at the end of experiments (30 minutes). All data were compared with ANOVA and t-test and significance was considered when P<0.05.

RESULTS: Ventilation of the lungs with hypoxic gas induced HPV in the control group. DIDS did not have a further effect on HPV compared with the control group. The combination of Trolox and DIDS decreased HPV rather than Trolox per se at 5 minutes. Furthermore, HPV was abolished in both the Trolox and Trolox+DIDS groups at 30 minutes. Concentrations of NO metabolites in the Trolox+DIDS group were more than other groups.

CONCLUSION: The present study indicates a possible interaction between ROS and anion exchanger in acute HPV. It also suggests the modulatory effect of NO at above condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app