JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles.

A variety of VEGF inhibitors have been reported to treat cancers by suppressing tumor angiogenesis. Bevacizumab, a monoclonal VEGF antibody, was the first FDA approved anti-angiogenic agent for cancer treatments. However, bevacizumab shows modest therapeutic efficiency and often cause resistant problem in significant populations of cancer patients. To solve these problem, we investigated the therapeutic efficacy of siRNA drugs targeting VEGF and combination of the RNAi drug with bevacizumab for cancer treatments. For efficient VEGF siRNA delivery, chemically polymerized siRNAs were complexed with thiolated-glycol chitosan (psi(VEGF)/tGC). The poly-VEGF siRNA and thiolated-glycol chitosan formed stable nanoparticles via electrostatic interaction and chemical crosslinking, and showed high accumulation in tumor tissues resulting in efficient gene silencing. Both VEGF siRNA nanoparticles and bevacizumab had efficient therapeutic effects in tumor xenograft mouse models. Interestingly, most pronounced therapeutic efficacy was observed when the two distinct VEGF inhibitors were treated in combination revealing synergistic effects. The results showed that the psi(VEGF)/tGC nanoparticle mediated knockdown of VEGF exerts anti-tumor effects and the combination treatments with bevacizumab can extend the treatments options to conventional bevacizumab treatments for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app