JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A ubiquitin-proteasome inhibitor bortezomib suppresses the expression of CYP11B2, a key enzyme of aldosterone synthesis.

CYP11B2 is a key enzyme involved in the synthesis of the mineralocorticoid aldosterone. CYP11B2 expression in the adrenal glands is controlled by the renin-angiotensin system (RAS), and plays an important role in the maintenance of electrolyte metabolism in higher organisms. Abnormal overexpression of CYP11B2 results in the disruption of mineral balance and can lead to hypertension. Though the molecular mechanism of the regulation of CYP11B2 expression has remained elusive, we hypothesize that compounds that prevent CYP11B2 expression could represent a novel class of antihypertensive drugs. In this study, we established a high-throughput screening system to identify such compounds, and subsequently carried out chemical screening. We found that the ubiquitin-proteasome inhibitor bortezomib could suppress CYP11B2 expression and secretion of aldosterone induced by angiotensin II (Ang II) in adrenocortical H295R cells. Moreover, bortezomib down-regulated the Cyp11b2 mRNA expression facilitated in the adrenal gland of Tsukuba hypertensive mice, resulting in subsequent lowering of their blood pressures. Furthermore, we observed the characteristic alteration of H3K27ac in the adrenal CYP11B2 gene promoter induced by Ang II stimulation, which was found to be disrupted by bortezomib. Taken together, these results suggest the possibility of developing novel antihypertensive drugs that prevent CYP11B2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app