JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Heterotrimeric G-protein regulatory circuits in plants: Conserved and novel mechanisms.

ARTICLE ADDENDUM Efficient activation and deactivation of Gα protein is critical for the regulation of heterotrimeric G-protein mediated signaling pathways. While the core G-protein components and their activation/deactivation chemistries are broadly conserved throughout the eukaryotic evolution, their regulatory mechanisms seem to have been rewired in plants to meet specific needs. Plants such as Arabidopsis, which have a limited number of G-protein components and their regulators, offer a unique opportunity to dissect the mechanistic details of distinct signaling pathways. We have recently established an interaction between the regulator of G-protein signaling 1 (RGS1) and phospholipase Dα1 (PLDα1); 2 of the GTPase activity accelerating proteins (GAPs) of the Arabidopsis Gα protein, GPA1. We now show that phosphatidic acid (PA), a key product of PLDα1 activity, can bind with and modulate the GAP activity of RGS1, uncovering a molecular link between lipid and G-protein signaling and its role in providing the specificity of response regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app