Add like
Add dislike
Add to saved papers

Establishment and assessment of a novel in vitro bio-PK/PD system in predicting the in vivo pharmacokinetics and pharmacodynamics of cyclophosphamide.

1. A novel bio-pharmacokinetic/pharmacodynamic (PK/PD) system was established and assessed in predicting the PK parameters and PD effects of the model drug cyclophosphamide (CP) considering the interrelationships between drug metabolism, pharmacological effects and dynamic blood circulation processes in vitro. 2. The system contains a peristaltic pump, a reaction chamber with rat liver microsomes (RLMs) encapsulated in pluronic F127-acrylamide-bisacrylamide (FAB) hydrogels, an effector cell chamber and a recirculating pipeline. The metabolism and pharmacological effects of CP (5, 10 and 20 mM) were measured by HPLC and MTT assay. A mathematical model based on mass balance was used to predict the in vitro clearance of CP. In vivo clearance of CP was estimated by in vitro to in vivo extrapolations (IVIVE) and simulations using Simcyp® software. 3. The predicted in vivo clearance of CP at concentrations of 5, 10 and 20 mM was 11.36, 10.12 and 10.68 mL/min/kg, respectively, within two-fold differences compared with the reported 11.1 mL/min/kg. The survival ratio of effector cells during the metabolism and circulation of CP was significantly enhanced. 4. This system may serve as an alternative approach to predict in vivo metabolism, pharmacological effects and toxicity of drugs, ensuring an efficient drug screening process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app