Add like
Add dislike
Add to saved papers

New tetrahedral zinc halide Schiff base complexes: Synthesis, crystal structure, theoretical, 3D Hirshfeld surface analyses, antimicrobial and thermal studies.

A new bidentate Schiff base ligand named as N,N'-bis((E)-3-phenylallylidene)butane-1,4-diamine (L) and three its zinc halide complexes were synthesized and characterized by FT-IR, 1 H NMR, 13 C NMR and UV-Vis spectroscopy. The crystal structure of zinc bromide and iodide complexes were characterized using single crystal X-ray diffraction. The two structures are isomorphous, crystallizing in the monoclinic crystal system with space group C2/c with closely similar unit cell dimensions. In these complexes, the Zn(II) ion is in the center of a distorted tetrahedral environment completed by two iminic nitrogen atoms of Schiff base ligand and two halide anions. The analysis of crystal structures shows that intermolecular interactions such as CH⋯halogen, π⋯π and CH⋯π interactions have effective role in stabilization of complexes structure. Intermolecular interactions were more analyzed using 3D Hirshfeld surface analysis and corresponding 2D fingerprint plots. Furthermore, structural optimization by DFT calculations at the B3LYP/LANL2DZ level have been performed and then compared with the experimental data. Time-dependent density functional theory (TDDFT) has been also used to calculate the electronic transitions of molecules at B3LYP/LANL2DZ level using the optimized ground-state geometries. NBO analysis was applied for investigation of intra and inter-molecular bonding and conjugative interaction in molecular systems. Schiff base ligand and their zinc complexes have been screened for their antibacterial and antifungal activities by disc diffusion method. Thermal behaviors of all compounds were studied by TG/DTG analysis data. Also, nanostructures of zinc complexes were synthesized by sonochemical method and characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). ZnO nanoparticles were simply prepared by calcination of zinc iodide complex as new precursor at 600°C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app