Add like
Add dislike
Add to saved papers

Methane production in an anaerobic osmotic membrane bioreactor using forward osmosis: Effect of reverse salt flux.

Bioresource Technology 2017 September
This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO3 and KH2PO4 as draw solutes. Results showed that KH2PO4 exhibited the lowest RSF in terms of molar concentration 19.1mM/(m(2).h), while for KCl and KNO3 it was 32.2 and 120.8mM/(m(2).h), respectively. Interestingly, bio-methane production displayed an opposite order with KH2PO4, followed by KCl and KNO3. Pyrosequencing results revealed the presence of different bacterial communities among the tested fertilizers. Bacterial community of sludge exposed to KH2PO4 was very similar to that of DI-water and KCl. However, results with KNO3 were different since the denitrifying bacteria were found to have a higher percentage than the sludge with other fertilizers. This study demonstrated that RSF has a negative effect on bio-methane production, probably by influencing the sludge bacterial community via environment modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app