Add like
Add dislike
Add to saved papers

Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities.

Molecules bearing indole nucleus present diverse biological properties such as antitumor and anti-inflammatory activities that can be associated both to DNA and protein interactions. This study focused on the synthesis of new indole derivatives with thiazolidines and imidazolidine rings condensed as side chains as well as the evaluation of their ability to interact with the DNA and antitumor and topoisomerase inhibition activities. All derivatives were successfully synthesized and their structures were elucidated by mass spectrometry (MS), infrared (IR), spectroscopy (1)H NMR, (13)C NMR, COSY (1)H-(1)H and HSQC (1)H-(13)C. The antitumor activity was evaluated against different cancer cell lines using the antiproliferative MTT assay. DNA binding ability was analyzed by absorption spectroscopy and fluorescence technique using ethidium bromide (EB) as a fluorescent probe. Changes were observed in spectroscopic properties of the compounds after interacting with ctDNA (calf thymus DNA), with hypochromic and hyperchromic effects, besides blue or red shifts in the maxima of spectra. The indole derivative 5-(1H-Indol-3-ylmethylene)-thiazolidin-2,4-dione (4c) presented the best results in antitumor assay against the breast line tested (T47D), with IC50 value lower than the positive control, doxorubicin (1.93 and 4.61 μM, respectively). On the other hand, the compound 3-amino-5-(1H-indol-3-ylmethylene)-2-thioxo-thiazolidin-4-one (4a) was active against leukemia cell lines (HL60 and K562) with the high value of the DNA binding constant, Kb of 5.69 × 10(4). However, this compound (4a) did not inhibit the topoisomerase-I activity evaluated by relaxation assay. These results show that the indole nucleus contribute to the incorporation of molecules into the DNA. Moreover, it was highlighted that basic side chains, such as thiazolidines and imidazolidines, and free amino group, are relevant for design of promising antitumor and DNA binding compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app