Add like
Add dislike
Add to saved papers

Carbon black aggregates cause endothelial dysfunction by activating ROCK.

Carbon black nanoparticles (CBNs) have been associated with the progression of atherosclerosis. CBNs normally enter the bloodstream and crosslink together to form agglomerates. However, most studies have used nano-sized CB particles to clarify the involvement of CBN exposure in CBN-induced endothelial dysfunction. Herein, we studied endothelial toxicity of CBN aggregates (CBA) to human EA.hy926 vascular cells. Cell viability, lactate dehydrogenase leakage, and oxidative stress were affected by the highest concentration of CBA. Moreover, transmission electron microscopic results showed that CBA entered cells through membrane enclosed vesicles. Rho-associated kinase (ROCK) is involved in regulating vascular diseases. Thus, we co-treated with the of ROCK inhibitor Y-27632 to study whether other adverse effects caused by CBA are related to activating ROCK. As expected, co-treatment with Y-27632 attenuated CBA-induced cytoskeletal damage, dysfunction of the endothelial barrier, and expression of inflammatory factors. Taken together, these results demonstrate that aggregated CBNs can cause endothelial dysfunction possibly by activating ROCK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app