Add like
Add dislike
Add to saved papers

Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures.

Nanotechnology 2017 July 8
The integration of different two-dimensional materials within a multilayer van der Waals (vdW) heterostructure offers a promising technology for high performance opto-electronic devices such as photodetectors and light sources. Here we report on the fabrication and electronic properties of vdW heterojunction diodes composed of the direct band gap layered semiconductors InSe and GaSe and transparent monolayer graphene electrodes. We show that the type II band alignment between the two layered materials and their distinctive spectral response, combined with the short channel length and low electrical resistance of graphene electrodes, enable efficient generation and extraction of photoexcited carriers from the heterostructure even when no external voltage is applied. Our devices are fast (∼2 μs), self-driven photodetectors with multicolor photoresponse ranging from the ultraviolet to the near-infrared and offer new routes to miniaturized optoelectronics beyond present semiconductor materials and technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app