Add like
Add dislike
Add to saved papers

Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection.

Nanotechnology 2017 May 23
The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10(-5) A cm(-2). The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app