Add like
Add dislike
Add to saved papers

Modeling Living Cells Response to Surface Tension and Chemical Patterns.

Mechanobiology is an important epigenetic factor. It influences cell functioning and bears on gene induction, protein synthesis, cell growth, and differentiation. In the presence of patterned chemical cues, living cells can take shapes that are far from that of a drop of fluid. These shapes are characterized by inward curvatures that are pinned at the points of location of the cues. The mechanochemical interactions that orchestrate cell behavior is simulated and controlled by modeling the cells as made by parcels of fluid. Cells become drops that are then endowed with the presence of additional forces, generated on the fly, that effectively make them active. With the proper choice of the forces, the phenomena that emerge from the dynamics match quantitatively the experiments. A combination of hydrophilic and lipophilic forces acting between the beads of fluid allows the active drop to respond to patterned cues and form squares, pentagons, hexagons, and flowers, just as living cells do.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app