Add like
Add dislike
Add to saved papers

Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching.

Nanoscale 2017 June 9
The functional three dimensional micro-nanostructures (3D-MNS) play crucial roles in integrated and miniaturized systems because of the excellent physical, mechanical, electric and optical properties. Nanoimprint lithography (NIL) has been versatile in the fabrication of 3D-MNS by pressing thermoplastic and photocuring resists into the imprint mold. However, direct nanoimprint on the semiconductor wafer still remains a great challenge. On the other hand, considered as a competitive fabrication method for erect high-aspect 3D-MNS, metal assisted chemical etching (MacEtch) can remove the semiconductor by spontaneous corrosion reaction at the metal/semiconductor/electrolyte 3-phase interface. Moreover, it was difficult for MacEtch to fabricate multilevel or continuously curved 3D-MNS. The question of the consequences of NIL meeting the MacEtch is yet to be answered. By employing a platinum (Pt) metalized imprint mode, we demonstrated that using electrochemical nanoimprint lithography (ECNL) it was possible to fabricate not only erect 3D-MNS, but also complex 3D-MNS with multilevel stages with continuously curved surface profiles on a gallium arsenide (GaAs) wafer. A concave microlens array with an average diameter of 58.4 μm and height of 1.5 μm was obtained on a ∼1 cm2 -area GaAs wafer. An 8-phase microlens array was fabricated with a minimum stage of 57 nm and machining accuracy of 2 nm, presenting an excellent optical diffraction property. Inheriting all the advantages of both NIL and MacEtch, ECNL has prospective applications in the micro/nano-fabrications of semiconductors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app