Add like
Add dislike
Add to saved papers

Mathematical model for preoperative identification of obstructed nasal subsites.

The planning of experimental studies for evaluation of nasal airflow is particularly challenging given the difficulty in obtaining objective measurements in vivo. Although standard rhinomanometry and acoustic rhinometry are the most widely used diagnostic tools for evaluation of nasal airflow, they provide only a global measurement of nasal dynamics, without temporal or spatial details. Furthermore, the numerical simulation of nasal airflow as computational fluid dynamics technology is not validated. Unfortunately, to date, there are no available diagnostic tools to objectively evaluate the geometry of the nasal cavities and to measure nasal resistance and the degree of nasal obstruction, which is of utmost importance for surgical planning. To overcame these limitations, we developed a mathematical model based on Bernoulli's equation, which allows clinicians to obtain, with the use of a particular direct digital manometry, pressure measurements over time to identify which nasal subsite is obstructed. To the best of our knowledge, this is the first study to identify two limiting curves, one below and one above an average representative curve, describing the time dependence of the gauge pressure inside a single nostril. These upper and lower curves enclosed an area into which the airflow pattern of healthy individuals falls. In our opinion, this model may be useful to study each nasal subsite and to objectively evaluate the geometry and resistances of the nasal cavities, particularly in preoperative planning and follow-up.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app