Add like
Add dislike
Add to saved papers

Fabrication of biomimetic bone grafts with multi-material 3D printing.

Biofabrication 2017 May 23
Extrusion deposition is a versatile method for the 3D printing of biomaterials such as hydrogels, ceramics, and suspensions. Recently, a new class of emulsion inks were developed that can be used to create tunable, hierarchically porous materials with a cure-on-dispense method. Propylene fumarate dimethacrylate (PFDMA) was selected to fabricate bone grafts using this technology due to its established biocompatibility, osteoconductivity, and good compressive properties. Scaffolds fabricated from PFDMA emulsion inks displayed compressive modulus and yield strength of approximately 15 and 1 MPa, respectively. A decrease in infill (from 100% to 70%) resulted in a six-fold increase in permeability; however, there was also a corollary decrease in mechanical properties. In order to generate scaffolds with increased permeability without sacrificing mechanical strength, a biomimetic approach to scaffold design was used to reinforce the highly porous emulsion inks with a dense cortical shell of thermoplastic polyester. Herein, we present an open source method for printing multi-material bone grafts based on PFDMA polyHIPEs with hierarchical porosity and reinforced with a dense shell of poly(ε-caprolactone) (PCL) or poly(lactic acid) (PLA). A multi-modal printing setup was first developed that combined paste extrusion and high temperature thermoplastic extrusion with high positional accuracy in dual deposition. Scaffolds printed with a PCL shell displayed compressive modulus and yield strength of approximately 30 and 3 MPa, respectively. Scaffolds printed with a PLA shell showed compressive modulus and yield strength of approximately 100 and 10 MPa, respectively. By combining this new paste extrusion of emulsion inks with traditional thermoplastic extrusion printing, we have created scaffolds with superior strength that promote cell viability and proliferation of human mesenchymal stem cells. The development of this technique shows great promise for the fabrication of a myriad of other complex tissue engineered scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app