Journal Article
Review
Add like
Add dislike
Add to saved papers

Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery.

The calcium ion (Ca2+ ) is an important signaling molecule implicated in many cellular processes, and the remodeling of Ca2+ homeostasis is a feature of a variety of pathologies. Typical methods to assess Ca2+ signaling in cells often employ small molecule fluorescent dyes, which are sometimes poorly suited to certain applications such as assessment of cellular processes, which occur over long periods (hours or days) or in vivo experiments. Genetically encoded calcium indicators are a set of tools available for the measurement of Ca2+ changes in the cytosol and subcellular compartments, which circumvent some of the inherent limitations of small molecule Ca2+ probes. Recent advances in genetically encoded calcium sensors have greatly increased their ability to provide reliable monitoring of Ca2+ changes in mammalian cells. New genetically encoded calcium indicators have diverse options in terms of targeting, Ca2+ affinity and fluorescence spectra, and this will further enhance their potential use in high-throughput drug discovery and other assays. This review will outline the methods available for Ca2+ measurement in cells, with a focus on genetically encoded calcium sensors. How these sensors will improve our understanding of the deregulation of Ca2+ handling in disease and their application to high-throughput identification of drug leads will also be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app