Add like
Add dislike
Add to saved papers

Time Trends of Persistent Organic Pollutants in Benthic and Pelagic Indicator Fishes from Puget Sound, Washington, USA.

We modeled temporal trends in polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane and its metabolites (DDTs) in two indicator fish species representing benthic and pelagic habitats in Puget Sound, Washington, USA. English sole (Parophrys vetulus, benthic) index sites and larger-scale Pacific herring (Clupea pallasii, pelagic) foraging areas represented a wide range of possible contamination conditions, with sampling locations situated adjacent to watersheds exhibiting high, medium and low development. Consistency in analytical data throughout the study was maintained by either calculating method-bias-correction factors on paired samples as methods evolved or by analyzing older archived samples by current methods. PCBs declined moderately in two herring stocks from a low-development basin (2.3 and 4.0% annual rate of decline) and showed no change in the highly developed and moderately developed basins during a 16- to 21-year period. PCBs increased in English sole from four of ten sites (2.9-7.1%), and the remaining six exhibited no significant change. PBDEs and DDTs declined significantly in all herring stocks (4.2-8.1%), although analytical challenges warrant caution in interpreting DDT results. PBDEs declined in English sole from two high-development and one low-development site (3.7-7.2%) and remained unchanged in the remaining seven. DDTs increased in English sole from one high-development site (Tacoma City Waterway) and declined in two high-development and one low development site. As with herring, analytical challenges warrant caution in interpreting the English sole DDT results. It is likely that source controls and mitigation efforts have contributed to the declines in PBDEs and DDTs overall, whereas PCBs appear to have persisted, especially in the pelagic food web, despite bans in PCB production and use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app