Add like
Add dislike
Add to saved papers

Maintenance of claudin-3 expression and the barrier functions of intercellular junctions in parotid acinar cells via the inhibition of Src signaling.

OBJECTIVES: Salivary acinar and duct cells show different expression patterns of claudins, which may reflect their different functions. To study the role of claudins in saliva secretion, we examined alterations in the expression patterns of cell adhesion molecules in parotid glands of γ-irradiated rats and analyzed the influence of those changes on intercellular barrier function using primary cultures of parotid acinar cells.

DESIGN: Rats were γ-irradiated with doses of 5, 15 or 20Gy, and expression levels of cell adhesion molecules were examined by immunoblotting analysis. Acinar cells were isolated from parotid glands and were cultured in the absence or presence of the Src kinase inhibitor PP1. Changes in protein and mRNA expression patterns were determined by immunoblotting and by RT-PCR analyses, respectively. Intercellular barrier function was examined by measuring transepithelial electrical resistance and the paracellular flux of FITC-dextran.

RESULTS: In irradiated parotid glands, the expression of claudin-4 was enhanced at 15Gy or higher, levels that induce the hyposecretion of saliva, although that increase was transient. At 30days after irradiation, expression levels of cell adhesion molecules were decreased. In primary cultures, the expression of claudin-4 was also increased transiently but the expression of claudin-3 and E-cadherin was decreased. The barrier function of tight junctions was disrupted although the localization of occludin was maintained. The Src kinase inhibitor PP1 suppressed those changes in gene expression and retained the intercellular barrier function.

CONCLUSIONS: These results suggest that the inhibition of Src signaling maintains the barrier functions of intercellular junctions in salivary glands, which can be lost due to tissue injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app