JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Presymptomatically applied AMPA receptor antagonist prevents calcium increase in vulnerable type of motor axon terminals of mice modeling amyotrophic lateral sclerosis.

Increased intracellular calcium (Ca), which might be the consequence of an excess influx through Ca-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, plays a crucial role in degeneration of motor neurons. Previously we demonstrated that the presymptomatic application of AMPA receptor antagonist, talampanel, could reduce Ca elevation in spinal motor neurons of mice carrying the G93A mutation of superoxide dismutase 1 (SOD1), modeling amyotrophic lateral sclerosis (ALS). It remained to be examined whether the remote, functionally semi-autonomous motor axon terminals could be rescued from the Ca overload, or if the terminals, where the degeneration possibly starts, already experience intractable changes at early time points. Thus using electron microscopic techniques, we measured the Ca level of motor axon terminals in the interosseus muscle of the SOD1 mutant animals, which are prototypes of vulnerable nerve endings in ALS. In line with the results obtained in the perikarya, talampanel treatment could reduce Ca increase evoked by the presence of mutant SOD1 in the axon terminals if the treatment was started presymptomatically but not at an early symptomatic stage. We also tested the Ca level in the cell bodies and axon terminals of the oculomotor neurons, which are resistant to the disease. Neither Ca increase, nor talampanel effect could be demonstrated at either time point. This is consistent with the observations that oculomotor neurons contain increased level of Ca buffer, which could reduce excess Ca load, and they also express glutamate receptor subunit type 2, which renders AMPA receptors impermeable to Ca.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app