Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simultaneous production of monoclonal antibodies against Bacillus thuringiensis (Bt) Cry1 toxins using a mixture immunization.

The detections of Cry1 toxins are mainly dependent on immunoassays based on specific monoclonal antibodies (mAb). In the present study, a mixture immunization with seven Cry1 toxins was administered. The results showed that five mAbs with different characteristics, especially one mAb named 5-E8 which could recognize all the seven Cry1 toxins were obtained. Based on the 5-E8 mAb, a double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA) which can specifically detect the seven Cry1 toxins without cross-reactivity to Cry2A and vip3 was developed with the limit of detection (LOD) and limit of quantification (LOQ) of 6.37-11.35 ng mL-1 and 17.36-24.48 ng mL-1 , respectively. The recovery tests showed that the recoveries ranged from 78% to 110% within the quantitation range (LOQ-100 ng mL-1 ). The established DAS-ELISA can be a useful tool for monitoring the Cry1 toxins in agricultural products. Mixture immunization opens a new path for producing diverse mAbs simultaneously in a single immunization circle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app