Add like
Add dislike
Add to saved papers

Single-molecule spin orientation control by an electric field.

We report the effects of an electric field E on the spin orientations of nickelocene (Nc) deposited on the Cu surfaces by means of first-principles calculations. We employ the Hubbard-U corrected van der Waals density functional to take into account the strong correlation effects of the localized 3d electrons and the non-covalent binding involved in the molecule-surface coupling. We show that the deposited Nc molecule can switch between in-plane (in small E-field) and perpendicular magnetization (in large E-field). We find that the significant charge transfer between the molecule and the metallic surface plays a dominant role in the spin reorientation transition. From an electronic structure perspective, the shift in the Fermi level enhances the coupling between the occupied and unoccupied Ni-3d states of different spin states, which tends to facilitate the perpendicular magnetic anisotropy. These findings shed some light on the electrical control of the magnetic anisotropies of single-molecule magnets on metal surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app