Add like
Add dislike
Add to saved papers

The effectiveness of cutoff walls to control saltwater intrusion in multi-layered coastal aquifers: Experimental and numerical study.

The objective of this study was to examine the performance of cutoff walls in controlling saltwater intrusion in stratified heterogeneous coastal aquifers. Numerical and laboratory experiments were completed in laboratory-scale aquifer where the effectiveness of cutoff walls was assessed in three different configurations, including a homogeneous scenario, a stratified aquifer with high K-low K-high K pattern (case HLH) and another stratified aquifer with low K-high K-low K pattern (case LHL). The results show that the cutoff wall was effective in reducing the saltwater wedge in all the investigated cases of layered-aquifers with toe length reduction of up to 43%. The wall exhibited more wedge reduction in shallower than steeper hydraulic gradients. However, the soil stratification appeared to lessen the overall performance of the wall compared to the homogeneous case. The aquifer stratification disrupted the flow dynamics, and thus affected the freshwater velocity at the wall opening to various degrees, depending on the layering pattern. The presence of an interlayer of low k (case HLH) inhibited the downward movement of the freshwater towards the wall opening, and thus decreasing the repulsion ability of the wall. Moreover, the presence of an underlying low permeability layer (case LHL) was found to obstruct the freshwater flow in the lower part of the aquifer, thereby slowing down the velocity through the wall opening. Numerical analysis of other layering patterns of monotonically increasing/decreasing permeability from top to bottom showed that the cutoff wall remained effective in repulsing the seawater wedge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app