JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Systemic manifestations of primary Sjögren's syndrome in the NOD.B10Sn-H2 b /J mouse model.

Animal models that recapitulate human disease are crucial for the study of Sjögren's Syndrome (SS). While several SS mouse models exist, there are few primary SS (pSS) models that mimic systemic disease manifestations seen in humans. Similar to pSS patients, NOD.B10Sn-H2b /J (NOD.B10) mice develop exocrine gland disease and anti-nuclear autoantibodies. However, the disease kinetics and spectrum of extra-glandular disease remain poorly characterized in this model. Our objective was to characterize local and systemic SS manifestations in depth in NOD.B10 female mice at early and late disease time points. To this end, sera, exocrine tissue, lung, and kidney were analyzed. NOD.B10 mice have robust lymphocytic infiltration of salivary and lacrimal tissue. In addition, they exhibit significant renal and pulmonary inflammation. We identified numerous autoantibodies, including those directed against salivary proteins. In conclusion, the NOD.B10 model recapitulates both local and systemic pSS disease and represents an excellent model for translational studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app