Add like
Add dislike
Add to saved papers

Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways.

Acrylamide (AA) is a common food contaminant formed during food heat processing that has neurotoxic effects. We hypothesize that AA induces oxidative stress in astrocytes and microglia, leading to neurotoxicity. Oxidative status, translocation of Nrf2 and NF-κB, and related down-stream targets were measured in primary astrocytes and microglia obtained from BALB/c mice. The results showed that AA increased reactive oxygen species (ROS) formation and reduced glutathione levels, causing successive events associated with oxidative stress, including 4-hydroxynonenal and 8-hydroxy-2-deoxyguanosine adduct formation, in both cell types. Both Nrf2 and NF-κB pathways were activated, but Nrf2 and its downstream antioxidative genes acted at earlier stages in both cell types before NF-κB activation. After NF-κB activation, related cytokines, including IL-6, TNF-α, G-CSF, and IL-1β, were released and cell viability decreased. Greater ROS generation, faster glutathione reduction, and increased oxidative adduct formation were observed in microglia compared with astrocytes. Moreover, Nrf2/NF-κB and its downstream genes were up-regulated much faster and to greater degrees in microglia than astrocytes. These results clarify the roles of the Nrf2 and NF-κB pathways in AA-induced neurotoxicity. These cellular responses may provide new insights for the development of adverse outcome pathway approaches for risk assessments of AA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app