JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Central amygdala activation of extracellular signal-regulated kinase 1 and age-dependent changes in inflammatory pain sensitivity in mice.

Aging populations are more sensitive to noxious stimuli as a result of altered somatosensory systems. In these experiments, we examined pain-like behaviors in young, middle-aged, and old mice during peripheral inflammation to determine if the same sensitivity exists in preclinical animal models. Immediately following injury, middle-aged and old mice exhibited more spontaneous pain-like behaviors than young mice, matching pain prevalence in clinical populations. Middle-aged and old mice also developed persistent mechanical hypersensitivity in the injured paw. Furthermore, old mice developed mechanical hypersensitivity in the noninjured paw suggesting age-dependent changes in central nociceptive systems. To address this end, pain-related protein expression was examined in the central nucleus of the amygdala, a limbic brain region that modulates somatic pain. Following injury, increased phosphorylation of extracellular signal-regulated kinase 1, a protein with known nociceptive functions, was observed in the right central nucleus of the amygdala of old mice and not middle-aged or young animals. These findings suggest that age-dependent changes in supraspinal nociceptive systems may account for increased pain-like behaviors in aging populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app