Add like
Add dislike
Add to saved papers

Design, synthesis and characterization of doped-titanium oxide nanomaterials with environmental and angiogenic applications.

Since the last decade, the metal composite nanostructures have evolved as promising candidates in regard to their wide applications in the fields of science and engineering. Recently, several investigators identified the titanium based nanomaterials as excellent agents for multifunctional environmental and biomedical applications. In this perspective, we have developed a series of zinc-doped (2 and 5%) titanium oxide-based nanomaterials using various reaction conditions and calcination temperatures (TZ1-TZ3: calcined at 500°C, TZ4-TZ6: calcined at 600°C and TZ7-TZ9: calcined at 700°C). The calcined materials (TZ1 to TZ9) were thoroughly analyzed by several physico-chemical characterization methods. The increase of the calcination temperature results in significant changes of the textural properties of the nanostructured materials. In addition, the increase of the calcination temperature leads to the formation of anatase/rutile mixtures with higher quantity of rutile. Furthermore, incorporation of zinc changes the morphology of the obtained nanoparticles. The materials were studied in the photodegradation of methylene blue observing that materials calcined at lower temperatures (TZ1-TZ3) have higher photocatalytic activity than those of the materials calcined at 600°C (TZ4-TZ6), rutile-based systems TZ7-TZ9 are not active. Based on the background literature of titanium and zinc based nanostructures in therapeutic angiogenesis, we have explored the pro-angiogenic properties of these materials using various in vitro and in vivo assays. The zinc-doped titanium dioxide nanostructures (TZ5 and TZ6) exhibited increased cell viability, proliferation, enhanced S-phase cell population, increased pro-angiogenic messengers (ROS: reactive oxygen species and NO: nitric oxide) production and promoted in vivo blood vessel formation in a plausible mechanistic p38/STAT3 dependent signaling cascade. Altogether, the results of the present study showcase these zinc doped-titanium oxide nanoparticles as promising candidates for environmental (water-remediation) and therapeutic angiogenic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app