Add like
Add dislike
Add to saved papers

An experimental and theoretical study of solvent hydrogen-bond-donating capacity effects on ultrafast intramolecular charge transfer of LD 490.

The excited-state intramolecular charge transfer (ICT) of LD 490 were investigated in different hydrogen-bond-donating solvents (α scale) on the basis of the Kamlet-Taft solvatochromic parameters (π*, α, β). The femtosecond transient absorption spectra and the kinetics decay rate reveal that with an increase of solvent's α capacity, the long-lived picosecond process, which is attributed to the ICT, becomes much faster. Combining with time-dependent density functional theory (TDDFT) calculations, we demonstrate that the enhancement of α acidity substantially increases the electronegativity of the carbonyl oxygen in LD 490, which strengthen excited-state intermolecular hydrogen bonding interactions and consequently facilitate the ICT process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app