Add like
Add dislike
Add to saved papers

Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment.

Overexpression of EGFR is often associated with advanced stage disease and poor prognosis. In certain cancers, Src works synergistically with EGFR to promote proliferation, survival, invasion and metastasis. Development of dual-target drugs against EGFR and Src is of therapeutic advantage against these cancers. Based on molecular docking and our previous studies, we rationally designed a new series of azaacridine derivatives as potent EGFR and Src dual inhibitors. Most of the synthesized azaacridines displayed good antiproliferative activity against K562 and A549 cells. The representative compound 13b showed nM IC50 values against K562 and A549 cells, and inhibited EGFR at inhibition rate of 33.53% at 10 μM and Src at inhibition rate of 72.12% at 1 μM. Furthermore, compound 13b could inhibit the expression of EGFR, p-EGFR, Src and p-Src. Moreover, 13b efficiently inhibited the invasion of tumor cells and induced cancer cells apoptosis. Our study suggested that azaacridine scaffold can be developed as novel multi-target kinase inhibitors for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app