Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Characterization of an ionic liquid-tolerant β-xylosidase from a marine-derived fungal endophyte.

Ionic liquids (ILs) are used in lignocellulosic biomass (LCB) pretreatment because of their ability to disrupt the extensive hydrogen-bonding network in cellulose and hemicellulose, and thereby decrease LCB recalcitrance to subsequent enzymatic degradation. However, this approach necessitates the development of cellulases and hemicellulases that can tolerate ∼20% (w/v) IL, an amount that either co-precipitates with the sugar polymers after the initial pretreatment or is typically used in single-pot biomass deconstructions. By investigating the secretomes from 4 marine-derived fungal endophytes, we identified a β-xylosidase derived from Trichoderma harzianum as the most promising in terms of tolerating 1-ethyl-3-methylimidazolium-dimethyl phosphate (EMIM-DMP), an IL. When tested with p-nitrophenyl-β-d-xyloside, this extracellular xylosidase retained ∼50% activity even in 1.2 mol·L-1 (20% w/v) EMIM-DMP after incubation for 48 h. When tested on the natural substrate xylobiose, there was ∼85% of the initial activity in 1.2 mol·L-1 EMIM-DMP after incubation for 9 h and ∼80% after incubation for 48 h. Despite previous findings associating thermostability and IL tolerance, our findings related to the mesophilic T. harzianum β-xylosidase(s) emphasize the need to include the marine habitat in the bioprospecting dragnet for identification of new IL-tolerant LCB-degrading enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app