Add like
Add dislike
Add to saved papers

Phonon-Plasmon Coupling and Active Cu Dopants in Indium Arsenide Nanocrystals Studied by Resonance Raman Spectroscopy.

Doping of semiconductor nanocrystals is an emerging tool to control their properties and has recently received increased interest as the means to characterize the impurities and their effect on the electronic characteristics of the nanocrystal evolve. We present a temperature-dependent Raman scattering study of Cu-doped InAs nanocrystals observing changes in the relative scattering intensities of the different modes upon increased dopant concentrations. First, the longitudinal optical (LO) phonon overtone mode is suppressed, indicating weakening of the coupling strength related to the effect of screening by the free electrons. Second, the transverse optical (TO) mode is relatively enhanced compared to the LO mode, which is attributed to the appearance of a coupled phonon-plasmon mode analogous to observations for n-type doped bulk InAs. These signatures indicate that the Cu impurities serve as active dopants and occupy an impurity-related pseudo sub-band akin to the heavy doping limit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app