Add like
Add dislike
Add to saved papers

Safety evaluation of an oat grain alkaloid gramine by genotoxicity assays.

Gramine is a natural indole alkaloid that has been isolated from different raw plants occurring mainly in Avena sativa, etc. The study was aimed to investigate the possible in vitro antioxidant, in vitro mutagenic, in vitro antimutagenic, and in vivo genotoxic activity of gramine using ferric reducing ability of plasma (FRAP) assay, Metal chelating, Ames bacterial reverse mutation test, and the mouse bone marrow micronucleus assay as well as chromosomal aberration. Four concentrations of gramine viz. 250, 500, 1000, and 2000 μg/mL were evaluated for its antioxidant activity in FRAP Assay and Metal Chelating Test. Four concentrations of gramine (1250 μg/plate, 2500 μg/plate, 5000 μg/plate, and 10 000 μg/plate) were employed in Salmonella typhimurium strains to study the mutagenicity in the presence and absence of standard mutagens, 2-aminofluorene (2-AF), sodium azide (SA), and 2-nitrofluorene (2-NF). Three doses, i.e. 0.1, 0.2, and 0.3 × the LD50 of gramine (i.e. 50 mg/kg, 100 mg/kg, and 150 mg/kg) were administered orally to either sex of Swiss albino mice for 48 h to study the genotoxic activity in micronucleus assay as well as chromosomal aberration. Gramine showed potent antioxidant activity in both the assay. Gramine at the given dose lacks mutagenicity as well as found to possess antimutagenic efficacy. Interestingly, S9 enzymes increase the antimutagenic activity in a dose-dependent manner. There was no significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs), as well as no significant difference in the percentage of chromosomal aberrations was observed between the gramine groups and the negative groups but percentage of polychromatic erythrocytes (PCEs) is found to be higher in all the gramine groups. These results indicate significant antioxidant, non-mutagenic as well as non-genotoxic activity of gramine in vitro and in vivo in the given doses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app