Add like
Add dislike
Add to saved papers

Study on the interaction of chromate with bovine serum albumin by spectroscopic method.

The interaction between two chromates [sodium chromate (Na2 CrO4 ) and potassium chromate K2 CrO4 )] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster's non-radiative energy transfer theory. The results of UV-Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app